Practical Discrete Unit Disk Cover Using an Exact Line-Separable Algorithm

نویسندگان

  • Francisco Claude
  • Reza Dorrigiv
  • Stephane Durocher
  • Robert Fraser
  • Alejandro López-Ortiz
  • Alejandro Salinger
چکیده

Given m unit disks and n points in the plane, the discrete unit disk cover problem is to select a minimum subset of the disks to cover the points. This problem is NP-hard [11] and the best previous practical solution is a 38-approximation algorithm by Carmi et al. [4]. We first consider the line-separable discrete unit disk cover problem (the set of disk centres can be separated from the set of points by a line) for which we present an O(mn)-time algorithm that finds an exact solution. Combining our line-separable algorithm with techniques from the algorithm of Carmi et al. [4] results in an O(mn) time 22-approximate solution to the discrete unit disk cover problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Line-Separable Algorithm for Discrete Unit Disk Cover

Given a set D of m unit disks and a set P of n points in the plane, the discrete unit disk cover problem is to select a minimum cardinality subset D′ ⊆ D to cover P. This problem is NP-hard [14] and the best ∗[email protected][email protected][email protected] §[email protected][email protected][email protected] ∗∗[email protected] ††[email protected]

متن کامل

Unit Disk Cover Problem

Given a set D of unit disks in the Euclidean plane, we consider (i) the discrete unit disk cover (DUDC) problem and (ii) the rectangular region cover (RRC) problem. In the DUDC problem, for a given set P of points the objective is to select minimum cardinality subset D∗ ⊆ D such that each point in P is covered by at least one disk in D∗. On the other hand, in the RRC problem the objective is to...

متن کامل

On the Discrete Unit Disk Cover Problem

Given a set P of n points and a set D of m unit disks on a 2-dimensional plane, the discrete unit disk cover (DUDC) problem is (i) to check whether each point in P is covered by at least one disk in D or not and (ii) if so, then find a minimum cardinality subset D∗ ⊆ D such that the unit disks in D∗ cover all the points in P. The discrete unit disk cover problem is a geometric version of the ge...

متن کامل

The Within-Strip Discrete Unit Disk Cover Problem

We investigate the Within-Strip Discrete Unit Disk Cover problem (WSDUDC), where one wishes to find a minimal set of unit disks from an input set D so that a set of points P is covered. Furthermore, all points and disk centres are located in a strip of height h, defined by a pair of parallel lines. We give a general approximation algorithm which finds a 3d1/ √ 1− h2e-factor approximation to the...

متن کامل

Covering Points by Unit Disks of Fixed Location

Given a set P of points in the plane, and a set D of unit disks of fixed location, the discrete unit disk cover problem is to find a minimum-cardinality subset D′ ⊆ D that covers all points of P . This problem is a geometric version of the general set cover problem, where the sets are defined by a collection of unit disks. It is still NP-hard, but while the general set cover problem is not appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009